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Sorting is a fundamental operation in various applications and a traditional research topic in computer sci-

ence. Improving the performance of sorting operations can have a significant impact on many application

domains. Much attention has been paid to hardware-based solutions for high-performance sorting. These are

often realized with application-specific integrated circuits (ASICs) or field-programmable gate arrays (FPGAs).

Recently, in-memory sorting solutions have also been proposed to address the movement cost issue between

memory and processing units, also known as the Von Neumann bottleneck. Due to the complexity of the

sorting algorithms, achieving an efficient hardware implementation for sorting data is challenging. A large

body of prior solutions is built on compare-and-swap (CAS) units. These are categorized as comparison-based

sorting. Some recent solutions offer comparison-free sorting. In this survey, we review the latest works in the

area of hardware-based sorting. We also discuss the recent hardware solutions for partial and stream sort-

ing. Finally, we discuss some important concerns that need to be considered in the future designs of sorting

systems.
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1 Introduction

Today, the data volume has increased significantly in many application domains. Processing data at
the terabyte and petabyte levels has become routine. Processing large volumes of data is challeng-
ing and is expected to remain at an upward rate [27]. Sorting is one of the substantial operations
in computer science performed for different purposes, from putting data in a specific order, such
as ascending or descending, to finding the minimum and maximum values, finding the median, and
partial sorting to find the top-m greatest or smallest values. As Figure 1 shows, sorting is used
in many application domains, from data merging to big data processing [52, 64], database opera-
tions [25], especially when the scale of files/data is very large, robotics [24, 81], signal processing
(e.g., sorting radar signals) [35, 51], and wireless networks [38].

Sorting time-series data according to their timestamps holds critical importance in numerous
artificial intelligence (AI) applications, such as forecasting and anomaly detection [1], where
the sequential occurrence of events is of paramount significance [103]. Wireless sensor network
applications often incorporate genetic algorithms, with the “Non-dominated Sorting Genetic

Algorithm (NSGA)” being a commonly employed and efficient approach requiring sorting [23].
Additionally, wireless networks necessitate the implementation of sorting algorithms that are both
energy-optimal and energy-balanced, such as enhanced sorting algorithms [84]. The concept of
sorting also extends to robotic visual tasks. Much like traditional scalar sorting, sorting items
based on attributes like color, shape, or other features within a robot’s perceived environment con-
stitutes a tangible engineering application of sorting [77]. In the field of robotics, object sorting is
a significant task. Particularly in computer vision applications, sorting objects by robots based on
their perceived environment is challenging [11]. Another intriguing application is to control green-
house climatic factors through sorting networks [72]. Some researchers adopt an external sorting
methodology to sort large-scale datasets. External sorting serves as a solution for sorting vast
datasets that cannot fit into the primary memory of a computing platform. Instead, it utilizes addi-
tional memory elements like hard disk drives, employing a sort-and-merge strategy [17]. Sorting
has also found novel applications in signal processing. This extends from theoretical scalar sorting
to sorting tasks in real-world signal processing. An illustrative example is radar signal sorting, a
recent and intricate sorting challenge in the context of multi-function radar systems [20].

Improving the sorting speed can have a significant impact on all these applications. Many
software- and hardware-based solutions have been proposed in the literature for high-performance
sorting. Software-based solutions rely on powerful single/multi-core and graphics processing

unit (GPU)-based processors for high performance [83]. Much attention has been paid to hard-
ware sorting solutions, especially for applications that require very high-speed sorting [28, 54, 60].
These have been implemented using either application-specific integrated circuits (ASICs) or
field-programmable gate arrays (FPGAs). Depending on the target applications, the hardware
sorting units vary greatly in how they are configured and implemented. The number of inputs
can be as low as nine for some image processing applications (e.g., median filtering [26], compres-
sion [100]) to tens of thousands [28, 60]. The data inputs have been binary values, integers, or
floating-point numbers ranging from 4- to 256-bit precision.

Hardware cost and power consumption are the dominant concerns with hardware implementa-
tions. The total chip area is limited in many applications [19]. As fabrication technologies continue
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Fig. 1. Common applications of sorting: Big Data [16, 56, 63], Database operations [6, 33, 89], Robotics [11,

34, 77, 78], Wireless Sensor Networks [10, 55, 82, 84, 88], Signal Processing [20, 43, 51, 79, 93], and Wireless

Networks [80].

Fig. 2. The hardware designs for CAS operation in [60]. (a) Non-unary CAS operation, (b) Unary CAS block.

to scale, keeping chip temperatures low is an important goal since leakage current increases ex-
ponentially with temperature. Power consumption must be kept as low as possible. Developing
low-cost, power-efficient hardware-based solutions to sorting is an important goal [60].

There is a large body of work on the design of customized sorting hardware. These works seek
to utilize the hardware resources fully and to provide a custom, cost-effective hardware sorting
engine. Developing hardware-efficient implementations for sorting algorithms is challenging, con-
sidering the complexity of these algorithms [2, 28]. A significant amount of hardware resources is
spent on comparators and memory elements including large global memories, complex pipelining,
and complicated local and global control units [2].

Many of the prior hardware solutions are built on basic compare-and-swap (CAS) units that
compare pairs of data and swap if needed. These solutions are categorized as comparison-based

sorting. As shown in Figure 2(a), each basic CAS unit is conventionally implemented with a binary
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Table 1. Comparison between the Existing Surveys for Hardware Solutions of Sorting

Article Year
Sorting

Networks
Comparison-based

Sorting
Comparison-free

Sorting
Partial Sorting

In-memory
Sorting

Jmaa et al. [8] 2019 ❍ ● ❍ ❍ ❍

Skliarova [85] 2021 ● ● ❍ ❍ ❍

Ali [4] 2022 ◗ ◗ ◗ ❍ ❍

This work ● ● ● ● ●

❍ −→ not covered, ◗ −→ partially covered, ● −→ fully covered

comparator and two multiplexer (MUX) units [60]. Sorting networks of CAS units are frequently
used for fast and parallel hardware sorting. Their inherent parallelism enables them to achieve
sorting at a considerably faster rate than the fastest sequential software-based sorting algorithms.
However, CAS-based hardware solutions can exhibit high hardware costs in certain scenarios,
such as when implementing specific designs like bitonic sort. While these solutions are highly
efficient for some applications, they may come with tradeoffs, particularly in hardware complexity.
Additionally, alternative approaches can present other challenges, such as lower throughput,
highlighting the importance of selecting the appropriate solution based on the application
requirements [73].

In the last few years, some comparison-free/quasi-comparison-free sorting solutions have been
proposed to address the challenges with comparison-based sorting designs. We will discuss these
novel solutions in Section 2.2.

Complete sorting sorts all items (N ) of a list. Partial sorting has also been a popular sorting
variant. Unlike complete sorting, partial sorting returns a list of the M smallest or largest elements
in order where M < N [28, 74]. The cost of partial sorting is often substantially less than complete
sorting when the number of sub-sorting attempts is small compared to N . The other elements
(above the M smallest ones) may also be sorted as in-place partial sorting or discarded, which is
common in streaming partial sorts [15].

Despite many recent works in hardware-assisted sorting, no recent survey reviews the lat-
est developments in this area. Studying the literature, we found three surveys discussing prior
hardware-based sorting designs. These are compared in Table 1. Jmaa et al. [8] compare the per-
formance of the hardware implementations of popular sorting algorithms (i.e., Bubble Sort,
Insertion Sort, Selection Sort, Quick Sort, Heap Sort, Shell Sort, Merge
Sort, and Tim Sort) in terms of execution time, standard deviation, and resource utilization.
They synthesized the designs on a Zynq-7000 FPGA platform. Skliarova [85] reviewed different
implementation approaches for network-based hardware accelerators for sorting, searching, and
counting tasks. Ali [4] looked closely at comparison-based and comparison-free hardware solu-
tions for sorting. As in-memory and partial sorting are relatively emerging topics, these previous
surveys do not cover them. Motivated by this, this work reviews the latest hardware solutions for
complete, partial and in-memory sorting, covering both comparison-based and comparison-free
approaches. Table 2 summarizes and classifies the important works we study in this article.

To enhance the comparison of state-of-the-art hardware-based sorting solutions, we have orga-
nized them into categories based on their features. We first reviewed the complete sorting methods
using comparison-based and comparison-free approaches; these are more on sorting techniques,
like partial sorting, in the following section. While the platforms such as FPGA, ASIC, GPU, CPU,
and in-memory designs are discussed in these sections, there will be a separate section to highlight
the emerging in-memory computing, a promising direction in addition to available conventional
platforms. Figure 3 navigates the reader through this overall sectioning. Section 2 focuses on com-
plete sorting solutions, which may involve comparing elements or employing comparison-free
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Table 2. Prior Art for Hardware Solutions of Sorting

Reference Year Idea Design

C
o

m
p

ar
is

o
n

B
as

ed

Farmahini et al.[28] 2013 Sorting using hierarchical smaller blocks ♠
Lin et al.[49] 2017 Pointer-like iterative architecture ♠
Najafi et al.[60] 2018 Bit-stream-based and time-encoded unary design ♠
Norollah et al.[62] 2019 Consecutive normal and reverse sorting ✣
Jelodari et al.[41] 2020 Vertex indexing in graph representation of inputs ✣
Papaphilippou et al. [65, 66] 2020 Recursive parallel merge tree ✣
Preethi et al.[69] 2021 Clock gating techniques to improve power consumption ♠
Prince et al.[70] 2023 Sorting weighted stochastic bit-streams ♠

C
o

m
p

ar
is

o
n

Fr
ee Abdel-Hafeez et al. [2] 2017 One-hot weight representation ♠

Bhargav et al. [9] 2019 FSM module for sorting ♠
Chen et al.[18] 2021 Bidirectional architecture improving sorting cycle [9] ♠ / ✣
Sri et al.[86] 2022 Improving the boundary-finding module of [18] ✣
Ray et al. [73] 2022 Parallel Comparison-free Hardware Sorter ✣
Jalilvand et al.[39] 2022 Comparison-free sorting based on unary computing ♠

P
ar

ti
al

So
rt

in
g

Yu et al. [97] 2011 Spike sorting hardware ✣
Campobello et al. [14] 2012 Maximum - minimum finder ✣
Subramaniam et al. [87] 2017 Median finder ✣
Korat et al. [42] 2017 Odd-even merge sorting ✣
Valencia et al. [91] 2019 Minimum distance calculation for spike sorting ✣
Zhang et al. [101] 2021 Min-max sorting architecture ✷
Yan et al. [95] 2021 Determining a certain M largest or smallest numbers ✣

In
-M

em
o

ry

Wu et al.[94] 2015 Data sorting in flash memory (NAND flash-based) ❖
Samardzic et al. [75] 2020 Bonsai Sorting on CPU-FPGA by DRAM-scale sorting ✣ / ❖
Li et al. [48] 2020 Parallel sorting via hybrid memory cubes ▲
Prasad et al. [68] 2021 Memristor-based data ranking and min/max computation ✦
Chu et al. [22] 2021 Detecting partially ordered for cost reduction ✪
Riahi Alam et al. [3] 2022 High-performance and energy-efficient data sorting ★
Yu et al. [98] 2022 Column-skipping algorithm for memristive memory ♣
Zokaee et al.[104] 2022 Sorting large datasets based on sample sort ✦
Lenjani et al. [46] 2022 Optimizing external sorting for NVM-DRAM hybrid storage ✦
Liu et al. [50] 2023 Minimizing NVM write operations ❖
Gao et al. [29] 2024 Uniform recursive structure ✦

♠ −→ ASIC, ✣ −→ FPGA, ✷ −→ DRAM, ✦ −→ In-Memory, ♣ −→ Memristor-based, ★ −→ Adaptive Memristor, ✪ −→

NVM-Based, ▲ −→ In-Logic-Layer Based, ❖ −→ In-Memory Friendly.

Fig. 3. Three main sections of this survey: Complete and Partial Sorting for the techniques of sorting, and

In-Memory Sorting for platform-aware sorting.

methods. Section 3 discusses partial sorting techniques, and Section 4 explores in-memory sort-
ing solutions. While these categories can have high overlaps, we organized them in a manner to
provide readers with a clear overview of the topic. Section 5 discusses open challenges and future
works. Finally, Section 6 concludes the article.
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Table 3. Comparative Analysis of Sorting Architectures (Discussed in Section 2.1), Highlighting Key

Experimental Metrics Such as Hardware, Complexity, Latency, Energy Efficiency, Scalability, and

Optimization Focus

Ref. Hardware Time Com-

plexity

Space Complex-

ity

Latency Energy / Power Dataset / Application

[28] 65-nm O(logN logM) O(N log2 M) 17.64 ns for 16 to 4 max se-
lection unit

N/A M largest/smallest ele-
ments with no order

[49] 90-nm O(N logN ) O(log2 M) 1/2 to 1/3 compared to con-
ventional methods

13.60 mW for 32-bit 16-
to-4 unit

Real-time processing

[60] 45-nm O(N log2 N ) Up to 91% reduc-
tion in hardware
cost for large net-
works

100× increase due to unary
processing, mitigated with
time-encoding to process
>1000 HD images/sec

Up to 92% area and
power savings for large
networks

Sorting for IoT applica-
tions, image processing
(median filtering)

[62] FPGA (Virtex7) O(N) O(N ) ≈ 75ns for N = 64, bit-
width = 64

≈ 5W for N = 64, bit-
width = 64

Real-time and big-data
processing

[41] FPGA (Cyclone
IV)

O(1) for small
number of in-
puts

O(N 2) 2 cycles for N = 8 N/A Real-time processing

[65] FPGA (MPSoc) O(N /p) O(N ) N/A N/A Large Datasets

[69] 90-nm O(N 2) N/A N/A Dynamic power reduced
by 47.5% at 50 MHz

Sorting for data centers
and IoT applications

[70] 45-nm O(N ) O(N ) 50% latency reduction due
to Lock-and-Swap (LAS)
units

3.8%–93% energy reduc-
tion compared to prior
designs

Sorting networks for
large-scale applications

2 Complete Sorting Methods

Complete sorting involves arranging all elements of a dataset in a specific order, such as ascend-
ing or descending. This is particularly valuable in applications where the entire dataset must be
organized, such as generating business intelligence reports, performing statistical analyses, or opti-
mizing database indexing for efficient query performance. In machine learning, sorting features or
training datasets can enhance algorithm efficiency, which is especially critical for on-edge learning
applications requiring dedicated sorting hardware. Larger systems, including financial platforms,
e-commerce operations, and inventory management systems, also rely on complete sorting to en-
able accurate ranking, reporting, and decision-making. These processes are further enhanced by
implementing efficient sorting in hardware, such as GPUs or powerful FPGAs, in collaboration
with server systems.

We begin by reviewing recent works on complete sorting, which processes all the data to
sort them in an ascending or descending order. We divide our discussion into two categories:
comparison-based and comparison-free sorting.

2.1 Comparison-based

Table 3 provides a detailed comparison of the comparison-based sorting architectures, highlight-
ing their advantages and tradeoffs. Farmahini et al. [28] proposed a comparison-based design
that employs efficient techniques for constructing high-throughput, low-latency sorting units
using smaller building blocks in a hierarchical manner. Their design includes N -to-M sorting

and max-set-selection units. They extensively discuss the structure, performance, and resource
requirements of these units. Despite its primary focus on integer numbers, their design efficiently
accommodates two’s complement and floating-point numbers, as the comparators utilized in
their compare-and-exchange (CAE) blocks can be substituted accordingly.

Some sorting applications do not need to sort all input data. Instead, the application may only
require the identification of the M largest or M smallest values from a set of N inputs. These
algorithms are called partial sorters and will be discussed later in this survey. In an N -to-M max-
set-selection unit used in the sorting designs of [28], only the M largest inputs are required in no
specific order.
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Fig. 4. Lin et al. iterative sorting system. An iterative architecture is designed by repeatedly employing a

smaller sorting unit to process streaming input data. In addition to the application of the low-power sorting

module, the design also incorporates an adaptive clipping mechanism and a reordering module. Source: [49].

Lin et al. [49] proposed a hardware acceleration architecture for real-time sorting of M out of
N inputs. Their design benefits from moving indexes instead of data, called a pointer-like design.
They reduce power consumption by reducing switching activities and signal transitions while
maintaining high throughput. Their sorting approach has a time complexity of O(N log2 N ) for
the iterative design (we assume the input buffer size is the same as input size, N). The primary
contributor to power consumption is the switching activities of registers. To effectively reduce
power, they recommend modification to the register transfer level (RTL) design. Notably, signal
transitions increase when the input dataset is larger or when the bit width of the input sample
is significant. They propose incorporating additional registers to represent the position of each
input sample. So, only the indexes need to be migrated from register to register. When N inputs
are present, the complete index can be represented using only log2 N bits, irrespective of whether
the bit-widths are 8-bit, 16-bit, or more. While modifications may increase the total cell area, they
substantially reduce dynamic power dissipation.

Executing the sorting process using a single module is impractical for large input datasets, as it
requires high I/O bandwidth and a large cell area. To mitigate this issue, Lin et al. [49] proposed
reusing smaller sorting units as the core module and combining these small units with other control
units to implement an iterative architecture. Figure 4 shows their proposed architecture. Users
have the flexibility to select different sorting units as the core module, enabling them to tradeoff
throughput for resource constraints.

Najafi et al. [59] developed an area- and power-efficient hardware design for complete sorting
based on unary computing (UC). They convert the data from binary to unary bit-streams to sort
them in the unary domain. Their approach replaces the conventional complex design of the CAS

unit implemented based on binary radix with a simple unary-based design made of simple standard
AND and OR gates. Figure 2(b) demonstrates how a CAS block is implemented in the unary domain.
When two unary bit-streams of equal length are connected to the inputs, an AND gate yields the
minimum value, whereas an OR gate produces the maximum value. An overhead of this unary
design is the cost of converting data from binary to unary representation. However, this conversion
overhead is insignificant compared to the cost savings in the computation circuits. They report an
area and power saving of more than 90% for implementing a 256-input complete sorting network.
The unary design of [60] consists of simple logic gates independent of data size. The length of
bit-streams controls the computation accuracy. The longer the bit-stream, the higher the accuracy.
However, processing long, unary bit-streams can significantly increase latency with the sorting
approach outlined in [60]. This causes runtime overhead compared to the conventional binary
process. While the latency may be tolerated in many applications, they introduce a time-based,
unary design to mitigate the latency issue. They encode the input data to pulse-width modulated
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Fig. 5. The MDSA with 64 input records, forming an 8×8 matrix. Source: [62].

signals. The data value is determined by the duty cycle in this approach. The time-based approach
significantly reduces the latency at the cost of slight accuracy loss.

Prince et al. [70] combined the bit-stream capabilities of stochastic computing (SC) with bi-
nary weighting, reducing the latency of bit-stream-based sorting. The approach offers good scal-
ability and cost-efficiency compared to SC and traditional binary methods, making it an efficient
solution for sorting tasks. They use a weighted bit-stream converter to generate weighted bit-
streams for an adaptable sorting network. Unlike conventional SC bit-streams, each bit in the
weighted bit-streams retains its weight as a standard binary value. This conversion reduces the
number of bits in SC from 2N to N for N -bit precision, resulting in a substantial reduction in la-
tency and energy consumption by shifting from exponential to linear representation. They propose
a new lock-and-swap (LAS) unit to sort weighted bit-streams. Their LAS-based sorting network
can determine the result of comparing different input values early and then map the inputs to the
corresponding outputs based on shorter weighted bit-streams.

Norollah et al. [62] presented a novel multidimensional sorting algorithm (MDSA) and its
corresponding architecture, a real-time hardware sorter (RTHS), to efficiently sort large se-
quences of records. MDSA reduces the required resources, enhances memory efficiency, and has
a minimal negative impact on execution time, even when the number of input records increases.
MDSA divides large sequences of records into smaller segments, which are then sorted separately.
As shown in Figure 5, the MDSA algorithm consists of six consecutive phases and two modes: nor-
mal and reverse sorting. The sorting network organizes the records in descending and ascending
order for normal and reverse modes, respectively. In each phase, the sorting networks are fed by
a group of input records to sort independently.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 52. Publication date: June 2025.
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Fig. 6. RTHS architecture for 8×8 matrix records. Source: [62].

Fig. 7. DPBN unit for 8 inputs. Input and Output have the size of [7:0][63:0], and The direction signal indi-

cates the mode for sorting: normal or reverse. Source: [62].

The authors in [62] claim that their sorting method is more beneficial for resource conserva-
tion (memory efficiency) while providing high performance. Figure 6 shows the complete archi-
tecture of RTHS. This design uses pipelining to reduce the critical path in dual-mode pipeline

bitonic networks (DPBNs). Figure 7 shows a DPBN unit for 8 inputs. The number of pipeline
stages in a DPBN is directly proportional to its number of steps, which can be computed by
(1/2 log2(N )(log2(N ) + 1)), where N is the number of inputs. The implicit switch is done by fixed
wiring and so is entirely static. This hardwired switching does not require additional routing re-
sources and has minimal overhead.
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Fig. 8. An example of mapping unsorted input data to a graph. Each input, represented by a vertex, is linked

to all other vertices through directed edges, indicating a directed, fully connected graph. Source [41].

Jelodari et al. [41] proposed a low-complexity sorting network design, which maps the unsorted
input data to a graph. In this graph, the vertices represent inputs and are fully connected through
directed edges, as shown in Figure 8. This structure allows comparing all inputs with each other
through the directed edges connecting their corresponding vertices. At each end of any graph edge,
the corresponding vertex is tagged by 0 or 1. The tags of the vertices connected by an edge are
always complementary. The outgoing tag “1” means the source vertex is greater than or equal to the
sink vertex. The sum of the tags assigned to each vertex indicates the position of the corresponding
input data in the sorted output.

Papaphilippou et al. [66], [65] introduced a merge sorter tailored for small lists, which can merge
sublists recursively. This feature sets their solution apart from most large-scale sorters, often re-
liant on pre-sorted sublists or established hardware sorter modules. Their design bridges the gap
between high-throughput and many-leaf sorters by merge sorters, allowing bandwidth, data, and
payload width customization. They assess the applicability of their solution in their specialized
in-house context, specifically for database analytics. This involved calculating the count of distinct
values per key (group) from a dataset comprising key-value pairs. They integrated a fully-pipelined
high-throughput stream processor seamlessly with the sorter’s output, enabling real-time result
generation. Their streamlined process eliminates the need for temporary data storage, exempli-
fying task-pipelining for efficient data processing. Figure 9 shows their setup. They incorporate
a fast, lightweight merge sorter (FLiMS) as a key component within their parallel merge/sort
tree. The FLiMS unit combines two separate -already sorted- lists. The design is characterized by
p linear sorters, where p signifies the degree of parallelism being employed. Each individual linear
sorter has a length of N /p, with N representing the total merge capacity or the size of the sorted
chunk. This architectural arrangement sorts an input dataset comprising N elements while adeptly
merging already sorted lists of varying lengths.

Preethi et al. [69] investigated the use of a clock gating technique to design low-power sorters.
The bubble sort, bitonic sort, and odd-even sorting algorithms are redesigned to
make them low-power using a clock gating technique. The implementation results showed that
clock gating can reduce the dynamic power consumption of sorters by 47.5% with no significant
impact on the performance.

2.2 Comparison-free

In recent years, comparison-free sorting has gained significant attention due to its potential to over-
come the limitations of traditional comparison-based methods. Unlike comparison-based sorting,
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Fig. 9. The high-throughput sorting system for sorting data quickly while merging them efficiently at a

parallelism degree of p = 4. This structure possesses the capability to perform both the sorting of an input

containing N elements and the merging of N sorted lists of variable lengths. The 2-bit counter is incremented

whenever a new sorted chunk is flushed to the "Parallel Merge Tree.” This plays a vital role in the FLiMS

(fast lightweight merge sorter) system [65], ensuring correct sorting prioritization for independently sorted

chunks. Source: [66].

which relies on compare-and-swap operations to determine the order of elements, comparison-
free sorting eliminates the need for direct element comparisons. This approach leverages alter-
native techniques, such as unary computing, one-hot encoding, and state-based processing, to
achieve efficient and scalable sorting. These methods are particularly advantageous in hardware
implementations, where minimizing complexity, latency, and power consumption is critical. The
surge in research and development of comparison-free sorting is driven by its compatibility with
emerging paradigms like in-memory computing, which addresses the Von Neumann bottleneck by
performing operations directly in memory. This reduces energy consumption and data movement
overhead, making comparison-free sorting ideal for energy-constrained environments, such as mo-
bile or edge devices. Furthermore, these methods achieve lower latency and greater scalability, en-
abling efficient processing of large datasets in high-throughput applications. Comparison-free sort-
ing also avoids the extensive switching activities inherent in comparison-based methods, thereby
reducing dynamic power dissipation. Sorting networks like bitonic or merge sort, while robust,
introduce significant latency due to their sequential comparison layers. By contrast, comparison-
free approaches, such as parallel sorters, achieve efficient sorting with fewer resource demands,
making them an advanced choice for modern hardware-oriented systems. In this section, we will
provide an overview of these advancements. Table 4 provides a detailed comparison of sorting
architectures in this group, highlighting their advantages and tradeoffs.

Abdel-Hafeez and Gordon [2] proposed a comparison-free sorting algorithm for large datasets.
The method operates on the elements’ one-hot weight representation, a unique count weight as-
sociated with each of the N elements. The input elements are inserted into a binary matrix of size
N × 1, where each element is k bits. Concurrently, the input elements are converted to a one-hot
weight representation and stored in a one-hot matrix of size N × H . In this matrix, each stored
element is of size H -bit, and H = N gives a one-hot matrix of size N -bit×N -bit. The one-hot ma-
trix is transposed to a transpose matrix of size N ×N , which is multiplied by the binary matrix to
produce a sorted matrix. An example of this method is illustrated in Figure 11. The total number
of sorting cycles is linearly proportional to the number of input data elements N . The architecture
of [2] is a high-performance and low-area design for hardware implementation.

Bhargav and Prabhu [9] later proposed an algorithm for comparison-free sorting using finite-

state machines (FSMs). Their FSM consists of six states that describe the functionality of a
comparison-free sorting algorithm dealing with N inputs. Their proposed design shows 53% and
68% savings in area and power consumption compared to the design proposed in [2].
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Table 4. Comparative Analysis of Sorting Architectures (Discussed in Section 2.2), Highlighting Key

Experimental Metrics Such as Hardware, Complexity, Latency, Energy Efficiency, Scalability, and

Optimization Focus

Ref. Hardware Time Com-

plexity

Space Com-

plexity

Latency Energy Area Dataset /

Application

[2] 90-nm O(N ) O(N ) 4 − 6μs for
N = 1024

6μs ∗ 1.6mW 750000
transistor

Database
visualization

[9]
90-nm O(N ) N/A Not explicitly

mentioned
N/A 52739μm2 Sorting of large

datasets

[18]
90-nm O(N ) O(N ) Reduced due to

bidirectional
sorting

1.61nj for
N = 1024

605μm2 Sorting of large and
Gaussian-distributed
data

[86] 45-nm O(N ) O(N ) 21% increase
compared to [18]

32% increase
compared to
[18]

31% saving
compared
to [18]

Sorting of large
datasets

[30] FPGA
(Virtex5)

O(N ) O(N ) 5.3 to 15.5ns per
element

Reasonable for
tested dataset
sizes

2016 LUTs Pseudorandom,
random, and sorted
datasets

[73]
45-nm O(N ) N/A Average 3 cycles for

256-input design
N/A Up to 81%

reduction
in area

Simulation datasets
with random inputs

[39]
45-nm O(N ) O(N ) Linear delay with

smaller clock
periods

Efficient energy
utilization due
to parallel
clusters

Efficient
resource
utilization

Custom data for
real-time
applications

[96] 130-nm O(N ) O(N 2) 1ns per input N/A N/A Image processing

Chen et al. [18] improve the number of sorting cycles, which range from [2N to 2N + 2K − 1] to

[1.5N to 2N+( 2k

2 )−2]. Their proposed architecture improves the performance of the unidirectional
architecture in [2] by reducing the total number of sorting cycles via bidirectional sorting along
with two auxiliary modules. One of the auxiliary modules is boundary finding, which is designed to
record the maximum and minimum values of the input data for the high-index part (max H and min
H) and the low-index part (max L and min L). The high-index part processes the upper half of the
data range (e.g., 2K/2 to 2K −1), while the low-index part processes the lower half (e.g., 0 to 2K/2−1),
where K is the bit width of the data elements. Sorting tasks are performed concurrently in both
parts, significantly reducing sorting cycles. Boundary values for each part (maxH, minH, maxL,
minL) are calculated during the count mode to narrow the search range, enhancing efficiency.

As shown in Figure 10, the boundary values are stored in four K-bit registers where K is the
bit-width of input data. In the initial state of the circuit, the values of max H, min H, max L, and
min L are set to 2K/2, 2K − 1, 0, and (2K/2) −1, respectively. A binary finding module shortens the
range for index searching by finding the boundaries of the range. Bidirectional sorting allows the
sorting tasks to be conducted concurrently in the high- and low-index parts of the architecture.
Sri et al. [86] reduce the area, delay, and power consumption of the design of [18] by improving
the boundary finding module. Key modifications include eliminating the traditional count and
selection modes in favor of a single count variable, streamlining the boundary finding module
by removing AND gates and multiplexers, and optimizing the index storing process by replacing
flag registers with counter variables. These changes result in significant reductions in power con-
sumption, area usage, and delay. Simulation and synthesis results, using Verilog HDL and Cadence
Genus (45 nm technology), show that the proposed architecture achieves up to 46% lower power
consumption, 31% reduced area, and 21% lower delay compared to existing designs.

Ray and Ghosh [73] developed an architecture for parallel comparison-free sorting that sorts
N , n-bit elements consuming linear worst case sorting latency of O(N ) clock cycles utilizing p
clusters, with p as the parallelism degree. based on a model presented earlier in [30]. This work
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Fig. 10. Architecture of the boundary founding module. Source [18].

Fig. 11. Example of sorting four input data with the method of [2].

sorts N data elements completely by utilizing N iterations with a speed-up of n
� n

p �+p
compared to

non-parallel architectures.
Jalilvand et al. [39] proposed a fast and low-cost comparison-free sorting architecture based on

UC. Similar to [40, 57], their method iteratively finds the index of the maximum value by con-
verting data to left-aligned unary bit-streams and finding the first “1” in the generated bit-streams.
Figure 12 shows the high-level architecture. The architecture includes a sorting engine, a controller,
and a multiplexer. The design reads unsorted data from the input registers and performs sorting by
finding the address of the maximum number at each step. Figure 13 shows the architecture of the
sorting engine. The sorting engine contains simple logic and converts data to right-aligned unary
bit-streams. It returns the index of the bit-stream corresponding to the maximum value. This is
done by finding the bit-stream that produces the first “1”. The design also employs a controller
that gets a duplication sign signal from the sorting engine and puts the following value to the
output sorted register.

Finally, Yoon [96] proposed a sorting engine based on the radix-2 sorting algorithm. Their
sorting engine avoids comparison by creating and distributing data into buckets according to the
radix-2 sorting.

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 4, Article 52. Publication date: June 2025.



52:14 A. Jalilvand et al.

Fig. 12. High-level architecture of the comparison-free unary sorter. Source: [39].

Fig. 13. The Unary Sorting Engine Source: [39].

3 Partial Sorting

Partial sorting is primarily used to sort the top-M largest or smallest values out of N elements,
where M < N . Partial sortings have been used to determine the minimum and maximum val-
ues [74], find more than one relative maximum and minimum (max-set min-set selection) [28],
merge of partially sorted data, and approximate partial sorting [99]. Finding the minimum and
maximum values among a set of data has been particularly an important target of partial sorting.
FPGA has been a popular platform for implementing this type of sorting in hardware.

A comprehensive comparison of various hardware implementations is presented in Table 5,
showcasing their respective time complexity, latency, energy consumption, and application
domains.

Partial sorting is ideal for applications where only a small portion of the data is relevant, such
as partial ranking systems in search engines, recommendation engines targeting the most or least
popular items or users, competitive ranking, and brain-inspired spike processing systems. It is par-
ticularly suited for approximate computing applications, where processing a subset of elements
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Table 5. Comparative Analysis of Various Hardware Implementations for Partial Sorting Methods,

Highlighting Experimental Data: Time and Space Complexities, Latency, Energy Consumption, Area

Utilization, and Target Applications or Datasets

Ref. Hardware Time

Complexity

Space

Complexity

Latency Energy/Power Area Dataset/Application

[97] FPGA N/A N/A Learning: 5.6
ms

6.4 mW (10-bit),
8.6 mW (16-bit)

777 Slices, 41
BRAM (10-bit) /
1113 Slices, 65
BRAM (16-bit)

Real-time
multi-channel neural
signals

[14] FPGA O(1) to
O(log(n))

O(n2) to
O(n2)

N/A N/A N/A Sorting networks (SNs)
with min/max circuits

[87] FPGA O(N) O(1) 8 cycles N/A 1552 CLB, 344
DFF, 152 LUT

3×3 window median
filters

[42] FPGA < O(n) O(n) 358-370 MHz N/A 136-5487 LUTs,
181-8267 Regs

Vector-based parallel
sorting

[91] FPGA Template
matching

N/A 68 clock
cycles

64 nW @ 24 kHz
(ASIC)

0.3 mm2 (ASIC) /
4880 Slice
Registers, 6628
LUTs (FPGA)

Real-time
single/multi-channel
neural spike sorting

[101] In-DRAM
(Max-PIM)

O(1) Constant 1 cycle (for
XNOR
operation)

0.44 mJ for
dataset
T10I4D100K

Similar area as
Ambit and
DRISA-1T1C

Big data applications,
sorting, graph
processing

[95] FPGA N/A N/A 60 cycles
(32768-to-128
sort)

N/A 78,190 Slices, 456
BRAM

Partial sorting of large
datasets, e.g., 256-to-32,
32768-to-128

is sufficient. In larger systems, partial sorting benefits task scheduling, priority queues, and real-
time data processing by prioritizing critical or urgent elements instead of sorting the entire dataset.
This makes it especially advantageous in memory-constrained or real-time environments, where
full sorting may be too resource-intensive. Embedded systems, on-edge processing, external sort-
ing, and streaming algorithms can efficiently handle large data volumes or continuous streams
using partial sorting. For instance, neural network batch processing can leverage partial sorting
in stochastic gradient descent optimizations, where k-fold cross-validation may focus on partially
sorted batches while unsorted batches undergo standard training. Similarly, applications in im-
age processing or sensor data analysis can utilize partial sorting to detect significant features or
data points without the need to sort the entire dataset, enabling faster and more resource-efficient
computations.

Yan et al. [95] proposed an architecture for determining the k largest or smallest numbers on
FPGA. Their work allows selecting two min/max subsets with a real-time hardware partial

sorter (RTHPS) structure consisting of even-odd swap blocks, a bitonic sorting network, and par-
allel swap blocks. Korat et al. [42] proposed a sorting algorithm that partially sorts the odd and
even parts in a vector structure. Their method guarantees a linear time complexity withO(n). The
hardware unit includes two multiplexers and a comparator, which is responsible for ordering input
pairs. Their FPGA-based hardware design implemented on a Xilinx VIRTEX-7 VC707 FPGA con-
sumes 136 LUTs and 181 registers with a working frequency of 370 MHz when sorting eight inputs.

Median sorting is another practice of partial sorting with wide application in image processing,
particularly for image enhancement. Various hardware designs for median filtering have been pro-
posed in the literature. Subramaniam et al. [87] proposed a hardware design for finding a dataset’s
median value. They employ selective comparators to locate the median, allowing for partial sorting
with fewer elements than conventional designs that necessitate a fully sorted list. CAS operations
are obtained using a comparator and two 2-to-1 MUXs. They implement the design on an FPGA
(Xilinx FPGA Virtex 4 XC4VSX25) and evaluate it using an image processing case study [87]. Us-
ing a pipelined architecture, Cadenas et al. [12, 13] proposed a median filtering architecture using
accumulative parallel counters. Najafi et al. [60] further implemented a low-cost median filtering
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Fig. 14. The MIN-MAX PIM architecture preserves the original memory hierarchy with each DRAM chip

divided into multiple banks. Source: [101].

design based on UC by converting data to unary bit-streams and processing them in the unary
domain using simple standard AND and OR gates. Finally, Riahi Alam et al. [3] proposed a binary
and a unary architecture for energy-efficient median filtering completely in memory.

Finding the maximum and minimum values is one of the current topics in in-memory computing
applications. Zhang et al. [101] proposed an in-memory min-max sorting architecture in DRAM
technology for fast and big data applications. In Figure 14, each bank comprises multiple memory

matrices (MATs), which are essentially DRAM subarrays. The design supports Ambit [5, 76] logic
and instructions with enhanced support for the Dual Row Activation (DRA) mechanism, thus
providing compatibility with XNOR operations. The Computational Array includes (i) two-row
decoders, (ii) one column decoder, (iii) modified logic sense-amplifier, (iv) one latch per bit-line,
(v) pseudo-OR gate, and (vi) one priority encoder. Sorting and graph processing applications are
provided with an architecture that produces results 50 times faster than a GPU. This architecture
includes two-row decoders, a one-column decoder, a modified logic sense amplifier with a typical

sense amplifier (TSA), one latch per bit-line, a pseudo-OR gate, and one priority encoder (for the
resultant index of minimum and maximum locations).

Campobello et al. [14] discuss sorting networks’ complexity and propose a multi-input max-
imum finder circuit. Their design finds the maximum value using an XNOR comparator, a zero
catcher (via Q-port feedbacked D flip-flip), a buffer with enable for each input, an OR gate, and a
D-flip-flop.

Partial sorting can also be used as an intermediary tool to help understand data, e.g., to find
outliers [53]. This includes the complex task of spike sorting in brain-inspired computing. Spike
sorting encompasses algorithms designed to identify individual spikes from extracellular neural
recordings and classify them based on their shapes, attributing these detected spikes to their re-
spective originating neurons. This sorting process differs from conventional sorting as it involves
machine learning-related steps such as detection, feature extraction, and classification. Instead of
straightforward scalar sorting, spike sorting resembles the segmentation of patterns within brain
signal pulses [102]. Spike sorting involves partial sorting for tasks such as early learning termina-
tion, outlier analysis, and spike activity thresholding.

In the literature, spike sorting for a unit activity may encompass partial sorting to separate multi-
unit activity into distinct groups of single-unit activity [31]. The segmentation of spike data plays a
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Fig. 15. Template matching-based architecture for spike sorting. Source: [91].

significant role in distinguishing specific activities within the overall spike data. Within the domain
of spike processing, some studies underscore partial sorting for outlier analysis of the spikes [53],
while others commend it for thresholding operations [21]. Valencia and Alimohammad [91] im-
plement a hardware module for spike sorting architecture. Their design incorporates a template
matching unit to compute the minimum distance between spikes during the spike sorting process.
Figure 15 depicts the spike sorting design, which relies on template checks and minimum distance
calculations. In Figure 15, the aligned spike is directed into an Aligned Shift Register (ASR) mod-
ule, which has been set up for parallel input and serial output. The values stored in the templates
and the ASR module are then transferred into some Squared Difference Accumulator (SDA)
units. These SDA units are used to calculate and accumulate the squared differences between the
spike waveform preserved in the ASR and templates. The MIN unit identifies and conveys the
minimum value to the comparator, along with the index of the minimum value, which is then
passed on to the Control Unit. A substantial reduction of raw data to sorted spikes is achieved
by transmitting only those sorted spikes (in a partial sorting manner) that match a small set of
frequently encountered waveforms. Such advancement in hardware-powered sorting is expected
to open new research avenues in emerging machine-learning models, particularly brain-inspired
computing.

4 In-Memory Sorting

In addition to complete and partial sorting methods, we also explore in-memory sorting as an
emerging approach, given the growing prominence of in-memory computing. While some meth-
ods from the complete and partial sorting categories already incorporate memory hierarchies, the
ones implemented with in-memory architectures will be revisited and further discussed in this
section. Table 6 provides a systematic overview of the recent in-memory sorting architectures,
comparing their performance across critical metrics such as time complexity, space complexity,
latency, and energy consumption. The compilation highlights the diverse approaches in hardware
design, ranging from NAND flash-based SSDs to advanced memristive memory arrays, demon-
strating the ongoing innovation in computational sorting techniques.

The conventional sorting approach wastes a significant portion of the total processing time
and energy consumption for transferring data between the memory and processing unit. Most
prior sorting designs are implemented based on this Von Neumann architecture with separate
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Table 6. Comprehensive Comparative Analysis of In-memory Sorting Architectures Considering

Experimental Data

Ref. Hardware Time

Complexity

Space Latency Energy Dataset/

Application

[94] NAND
flash-based SSD

O(N ) O(N ) Dependent on
record size (e.g.,
25μs read, 200μs
write)

N/A Variable-length
records,
databases

[75] FPGA O(N logN ) O(N ) 4-32 GB with
2.3 − 2.5x
speedup

3.3x better
bandwidth
efficiency

Datasets from
MB to TB

[48] Hybrid Memory
Cube (HMC)

O(N logN ) O(N ) Parallel
in-memory
sorting, reduced
data movement

Improved
energy
efficiency

Large-scale data
processing

[68] Memristive
Memory Arrays

O(N ) O(1) 12.4 − 50.7x
throughput gains

N/A Database, graph
analytics,
network
processing

[22] Non-Volatile
Memory (NVM)

O(N logN ) O(N ) Efficient sorting,
reduced NVM
write operations

N/A Partially sorted
datasets, hybrid
memory

[3] Memristive
Memory

O(N logN ) O(N )

and
O(2N )

Reduced
processing time

37x (binary),
138x (unary)
energy
reduction

Efficient
in-memory
sorting

[98] Memristive
Memory with
Near-Memory
Circuit

O(N ) O(N ) Column-
skipping, up to
4.08x speedup

3.39x energy
efficiency

Scalable sorting
across memory
banks

[104] Skyrmion
Racetrack
Memory (SRM)

O(N logN ) O(N ) In-memory
sorting, reduced
data movement

Energy-efficient
data transfer

Large-scale
datasets in data
centers

[46] Digital
Processing
Elements (PEs)

O(N logN ) O(N ) Cooperative
resource sharing

Improved
through algo-
rithm/hardware
co-optimization

Scalable
in-memory
sorting

[50] Non-Volatile
Memory

O(N logN ) O(N ) Customized
sorting for NVM

N/A Non-volatile
memory
applications

[29] Network of
Processing
Elements (PEs)

O(N ) O(N ) Low latency due
to design

Linear
dependency
with data
bit-width and
size

High
performance, low
latency
applications

memory and processing units [32]. In-memory computation (IMC) –aka processing-in-

memory (PIM)– is a promising solution to address this data movement bottleneck. In this pro-
cessing approach, the chip memory is used for both storage and computation [90]. With that in
mind, in-memory sorting has been suggested [3, 68], especially considering the unique characteris-
tics of non-volatile memories (NVMs), which position them as a strong contender for efficient
sorting within memory.
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NVMs are particularly suited for in-memory sorting due to their high density, enabling the
storage of large datasets within a compact memory footprint, and their non-volatility, which en-
sures data persistence during power interruptions. Furthermore, the inherent bitwise parallelism
of NVMs allows for efficient comparison and manipulation of data, while their low static power
consumption minimizes energy usage. However, challenges such as limited endurance and higher
write latencies pose significant constraints, as frequent write operations can degrade device relia-
bility and necessitate algorithmic and architectural optimizations. IMC-based sorters address these
challenges by leveraging the strengths of NVMs to eliminate the Von Neumann bottleneck, reduc-
ing data movement overhead and enabling massive parallelism directly within memory arrays.
This results in significantly lower latency and energy consumption, particularly for large-scale
and energy-constrained applications. Nonetheless, the choice of hardware for sorting depends on
specific application requirements. While NVMs excel in scenarios demanding high-density storage
and non-volatility, other hardware, such as GPUs, FPGAs, and ASICs, may outperform NVMs in
certain contexts. GPUs are well-suited for highly parallel tasks with irregular data access, FPGAs
offer customizable, low-power solutions for real-time and large-scale tasks, and ASICs provide effi-
ciency for fixed-function tasks in dedicated applications. Moreover, volatile memories like DRAM
or SRAM may be preferable for latency-sensitive applications where endurance and non-volatility
are less critical. By balancing these tradeoffs, IMC-based sorting architectures demonstrate their
potential to revolutionize hardware efficiency in sorting operations.

Chu et al. [22] proposed an NVM-friendly sorting algorithm called “NVMSorting”. NVMSorting
is a modification of the MONTRES algorithm [45], a sorting algorithm resembling merge sort,
designed for flash memory. MONTRES aims to enhance performance by minimizing I/O operations
and reducing the generation of temporary data during sorting. It includes a run generation phase
and a run merge phase, employing optimized block selection, continuous run expansion, and on-
the-fly merging for efficient data organization. NVMSorting can detect partially ordered runs by
using a new concept called natural run to reduce the sorting cost. A natural run consists of multiple
blocks. The items within each block do not need to be sorted, but the items between any two
consecutive blocks are ordered. In the first step, the algorithm searches for the input data’s partially
ordered runs (i.e., natural runs). The next step is the run generation, based on merge-on-the-fly and
run expansion mechanisms. DRAM is divided into two sections: (I) workspace for the natural runs
and (II) workspace for the other input data. Chu et al. use the NVM’s byte-addressable capability
to merge the runs. Their evaluations show that NVMSorting is more efficient than the traditional
merge sorting algorithms in terms of execution time (t) and number of NVM writes (w). However,
if the dataset is entirely random, NVMSorting can perform similarly to MONTRES, hybrid sort,
and external sort [92].

Li et al. [48] proposed a PIM architecture called IMC-Sort to perform parallel sort operations
using a hybrid memory cube (HMC). As shown in Figure 16, IMC-Sort comprises sorting units
specifically designed to operate within each HMC vault’s logic layer. The control unit of the HMC
vault is enhanced with some logic to carry out the sorting process. The sorting units in IMC-Sort
can parallel access and utilize the HMC crossbar network to communicate with one another.

In an “Intra-vault merging” step, they utilize a chunking technique to accommodate a range of
input sequence lengths using a fixed number of CAS units and a fixed input permutation unit. They
divide the sequence into chunks of a specific size determined by the number of CAS units. Then,
they sort the chunks. Finally, the sorted values are merged into a single sorted sequence. On the
other hand, an “Inter-vault merging” step combines the sorted values or sequences from all vaults
to produce a globally sorted sequence. IMC-Sort delivers 16.8× and 1.1× speedup and 375.5× and
13.6× reduction in energy consumption compared to the widely used CPU implementation and a
state-of-the-art near-memory custom sort accelerator [28, 71].
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Fig. 16. Overall architecture of the IMC-Sort. A single stack HMC vault is composed of several DRAM banks

that are linked to the logic layer via TSV. Source: [48].

Riahi Alam et al. [3] proposed the first in-array (in-memory) architectures for high-performance
and energy-efficient data sorting completely in memory using memristive devices. They introduce
two different architectures. The first architecture, “Binary Sorting,” is based on the conventional
weighted binary representation, while the second architecture, “Unary Sorting,” is based on the
non-weighted unary representation. Both of these sorting designs achieve a significant reduction
in the processing time compared to prior off-memory binary and unary sorting designs. They used
the memristor technology based on the stateful logic in which the input and output are presented as
the state of input and output memristors. In stateful logic, values are stored and maintained within
memristive switches through their resistance states. These switches store logic values and perform
logical operations, exhibiting both memory and computational capabilities [36]. They implement
the boolean operations with memristor-aided logic (MAGIC) [44] in a crossbar implementa-
tion. Each MAGIC logic gate utilizes memristors as inputs containing previously stored data and
additional memristor functions as the output. Parallel architectures such as CAS-based sorting
networks can be executed efficiently within the memory using these IMC logic operations [3].

In the first design, the memory is split into multiple partitions to enable parallel execution of
different CAS operations of each bitonic CAS stage. The number of partitions indicates the num-
ber of CAS units that can run in parallel. The first two inputs of each partition are sorted using a
basic sorting operation. Then, the maximum value of each basic sort operation is copied to another
partition determined by the sorting network. The second design is a complete unary sort system
that follows the same approach as the binary implementation but represents and processes the
data in the unary domain with uniform unary bit-streams [61]. The comparison operations are
implemented in this design based on a basic unary sorting unit. Their performance evaluation re-
sults show a significant latency and energy consumption reduction compared to the conventional
off-memory designs. On average, their in-memory binary sorting resulted in a 14× reduction in
latency and a 37× reduction in energy consumption. On the other hand, the average latency and
energy reductions for the in-memory unary sorting design were much more significant, at 1200×
and 138×, respectively. Further, they implemented two in-memory binary and unary designs for
Median filtering based on their developed in-memory basic sorting units. Their results showed
an energy reduction of 14× (binary) and 5.6× (unary) for a 3 × 3-based image processing system
and 3.1× and 12× energy reduction for binary and unary median filtering, respectively, for a 5 ×

5-based image processing system compared to their corresponding off-memory designs.
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Today’s systems often face memory bandwidth constraints that can limit their performance. The
available memory bandwidth can enormously impact the efficiency of the sorting algorithms. To
overcome the bandwidth problem in large-scale sorting applications, Prasad et al. [68] proposed
an iterative in-memory min/max computation technique. They applied a novel mechanism called
“RIME,” which enhances bandwidth efficiency by enabling extensive in-situ bitwise comparisons.
RIME eliminates unnecessary data movement on the memory interface, improving performance.
They provide an API library with significant control over essential in-situ operations like ranking,
sorting, and merging. With RIME, users can efficiently manage and manipulate data. To perform
bit-serial min/max operation, they execute an iterative search for bit value (1 or 0) within individual
columns of a data array using a 1T1R memristive memory. Each search iteration generates a match
vector to identify which rows in the array should be eliminated from the dataset. The memory
array must be capable of performing two additional operations, namely bitwise column search
and selective row exclusion.

The algorithm examines the binary values of all bit positions, beginning from the most signifi-
cant bit position in a set of numbers. This process is carried out using a M-step algorithm, during
which some of the non-minimum or non-maximum values may be removed from the set at each
step. At each step, a selection of matching numbers is formed by searching for “1” at the current
bit position. The selected numbers are removed from the set only if the set and selection are un-
equal. This results in all the final remaining numbers in the set having the minimum value. By
eliminating the unnecessary data movement for finding min/max of given data, their sorting oper-
ation obtains a bandwidth complexity of O(N ). With the suggested in-memory min/max locator,
the costs of accessing bandwidth when searching for the Mth value in a range of data decrease to
M operations, which shows a bandwidth complexity ofO(M). Their simulation results on a group
of advanced parallel sorting algorithms demonstrate a significant increase in throughput ranging
from 12.4× to 50.7× when using RIME.

Yu et al. [98] improve the speed and performance of Prasad et al.’s design by proposing a column-
skipping algorithm that keeps track of the column read conditions and skips those that are leading
0’s or have been processed previously (see Figure 17). A bank manager enables column-skipping
for datasets stored in different banks of the memristive memory. For detecting and skipping re-
dundant column reads, the algorithm records the k most recent row exclusion states and their
corresponding column indexes, which can be reloaded to avoid repeating these states.

To tackle the sorting challenges of large-scale datasets, Zokaee et al. [104] proposed Sky-Sorter,
a cutting-edge sorting accelerator powered by Skyrmion Racetrack Memory (SRM). Sky-Sorter
leverages the unique capabilities of SRM, enabling the storage of 128 bits of data within a single
racetrack. Sky-Sorter adopts the sample sort algorithm, which encompasses four essential
steps: sampling, splitting marker sorting, partitioning, and bucket sorting. First, it employs a ran-
dom sampling technique to estimate the distribution of the dataset. This sampled subset is then
sorted, and specific records are selected as splitting markers. The markers are crucial for defining
the boundaries of non-overlapping buckets. The next step involves partitioning, where all records,
excluding the splitting markers, are allocated to appropriate buckets based on their relationship to
the markers. Lastly, each bucket is sorted individually, and the results are concatenated to produce
the final sorted sequence. Bucket sorting, known for its high parallelizability, is the key to this
algorithm’s efficiency, with the distribution of bucket sizes playing a crucial role in maintaining
balance. It is important to evenly distribute records across all buckets to ensure a balanced distri-
bution and avoid load imbalances in bucket sorting. Larger random sampling sizes contribute to
more accurate estimates of the data distribution and less variability in bucket sizes. The algorithm
ensures that the probability of any bucket exceeding an upper size limit is nearly zero. In rare
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Fig. 17. Iterative min search with proposed column-skipping algorithm. Source: [98].

cases where a bucket size surpasses this threshold, the algorithm resamples splitting markers to
maintain uniformity in bucket sizes. The fundamental cell structure of SRM is composed of four
integral parts. These components encompass two injectors devoted to creating skyrmions, a de-
tector designed for precisely detecting skyrmions, a nano track to facilitate the controlled motion
of these skyrmions, and peripheral circuits that support and coordinate the functionality of the
entire cell. The authors claim that Sky-Sorter improves the throughput per Watt ∼ 4× over prior
FPGA-, Processing Near Memory (PNM)-, and PIM-based accelerators when sorting with a high
bandwidth memory DRAM, a DDR4 DRAM, and an SSD.

Liu et al. [50] proposed LazySort, an external sorting algorithm tailored to the NVM-DRAM
hybrid storage architecture. LazySort leverages NVM’s byte-addressable feature and locally or-
dered data to minimize write operations to NVM. It comprises two stages: Run generation and
Merge. To enhance efficiency, they introduce an optimization strategy known as RunMerge for
the merge stage. RunMerge intelligently merges non-intersecting data blocks based on the range
of index table records, reducing the total number of runs and memory usage. To validate the perfor-
mance, they established a real NVM-DRAM experimental platform and conducted comprehensive
experiments. The results showed LazySort’s superior time performance and significantly reduced
NVM write operations. Compared to traditional external sorting algorithms relying on HDD/SSD,
LazySort reduced sorting time by 93.08% and minimized NVM write operations by 49.50%. This
design then addresses an important need for efficient external sorting methods for NVM-DRAM
hybrid storage.

Lenjani et al. [46] proposed Pulley, an algorithm/hardware co-optimization technique for in-
memory sorting. Pulley uses 3D-stacked memories. They employ Fulcrum [47] for the baseline PIM
architecture. Fulcrum inputs data into a single-word arithmetic logic unit (ALU) sequentially
and enables operations that involve data dependencies and operations based on a predicate. In
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Fulcrum, every pair of subarrays has three row-wide buffers called Walkers. In the radix sorting
proposed in Fulcrum, all buckets have the same length, and a bucket in each pass can always fit in
one subarray. For efficient sorting of large data using Fulcrum, Lenjani et al. modified the design
by calculating the exact length of each bucket and the position of each key within that bucket.
In the first step, the keys of each processing unit are sorted locally. This step dichotomizes the
keys into two buckets (Bucket0 and Bucket1). The subarray-level processing unit (SPU) starts
Bucket0 from the bottom of the space and fills it upward, and starts Bucket1 from the end of the
space and fills it downward. In the next step, each SPU generates the histogram values of the first
256 buckets iteratively, and all SPUs reduce the histogram values of each of the 256 buckets in
the lowest sub-array. In Pulley, each vault’s core in the logic layer performs a prefix-sum on all
the shared sub-arrays in the vaults. Then, the cores in the vault aggregate their prefix-sum arrays.
They evaluate Pulley in 1-device and 6-device settings, where each device has four stacks of 8-GB
memories. Compared to IMC-Sort, Pulley has a lower working frequency.

Wu and Huang [94] introduced a novel sorting technique tailored explicitly to NAND flash-
based storage systems, aiming to optimize performance and efficiency. They propose a record
rearrangement and replacement method for unclustered sorting, which involves scanning sorted
tags to efficiently rearrange records and minimize unnecessary page reads during the process. They
introduce a strategic decision rule to harness the advantages of both clustered and unclustered
sorting approaches. This rule categorizes records based on their length and then selects the most
appropriate sorting method (clustered or unclustered) for each category, followed by merging the
sorted results. They reuse data to reduce page writes by detecting content similarities in the output
buffer and marking logical addresses in the address translation table for potential reuse. They pro-
vide a comprehensive I/O analysis, comparing the performance of clustered sorting, unclustered
sorting, MinSort, and FAST in terms of page reads and writes. Finally, they implement and test the
proposed methods on real hardware, including an Intel SSD and a Hitachi HDD, demonstrating
significant performance improvements compared to traditional external sorting methods.

Samardzic et al. [75] introduced “Bonsai," an adaptive sorting solution that leverages merge tree
architecture to optimize sorting performance across a wide range of data sizes, from megabytes
to terabytes, on a single CPU-FPGA server node. Bonsai’s adaptability is achieved by consider-
ing various factors, including computational resources, memory sizes, memory bandwidths, and
record width. It employs analytical performance and resource models to configure the merge tree
architecture to match the available hardware and problem sizes. Their approach can enhance sort-
ing efficiency on a single FPGA while also being used as a foundation for potential use in larger
distributed sorting systems. Bonsai’s primary objective is to minimize sorting time by selecting the
optimal adaptive merge tree configuration based on the hardware, merger architecture, and input
size. They demonstrate the feasibility of implementing merge trees on FPGAs, highlighting their
superior performance across various problem sizes, particularly for DRAM-scale sorting. Bonsai
achieves significant speedup over CPU, FPGA, and GPU-based sorting implementations, along
with impressive bandwidth efficiency improvements, making it an appealing solution for adaptive
sorting.

Most sorting algorithms utilizing dedicated processors are designed solely based on the paral-
lelization of the algorithm, lacking considerations of specialized hardware structures. A systolic
array is a specialized hardware architecture designed for efficient computation, particularly in par-
allel processing. It consists of a network of processors that rhythmically compute and pass data
through the system, allowing for high levels of data reuse and minimizing the need for extensive
memory access. The processors in a systolic array operate in a synchronized manner, which en-
hances throughput and computational efficiency. Researchers in [29, 37] propose a Systolic Sorter
Array, implemented by a uniform recursive structure that unifies the computational logic of the
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systolic array, which is highly parameterized in terms of data size, bit width, and type. In [29],
they utilize an array with a capacity of N + 2 to manage the sorting sequence. This algorithm
operates concurrently on two groups: the LEFT and RIGHT arrays. The sorting process alternates
between two states: Left In, Right Out (LIRO) and Left Out, Right In (LORI). LIRO, where the
LEFT array inputs data while the RIGHT array outputs sorted results, and LORI, which reverses
this functionality. The algorithm employs a binary grouping strategy, mapping pairs of data to
facilitate comparisons and sorting. It begins with initializing the array with a logical maximum
value, and during the LIRO state, inputs are compared to assign values accordingly. As the state
transitions to LORI, the algorithm continues to sort and output the data iteratively, achieving a
total of 2N operations for sorting a single sequence. Overall, the SSA algorithm is structured to
ensure efficient parallel execution for simultaneous sorting of two independent sequences. To ad-
dress large-scale sorting scenarios, the authors in [37] propose an enhanced merge tree structure,
the MC-merge tree, which flexibly adjusts concurrency levels and expands sorting capacity while
maintaining high throughput. Experimental results demonstrate significant performance gains,
achieving a maximum speedup of 73.17x and a throughput of 25.6 Gb/s compared to state-of-the-
art algorithms.

5 Open Challenges

Although significant strides have been made in the field of hardware sorting, numerous challenges
persist, warranting further research and innovation. In this section, we explore the ongoing chal-
lenges within the research on hardware-assisted sorting. Addressing these challenges can result
in sorting solutions that are more efficient in different aspects, from performance to footprint area,
power, and energy consumption. These challenges are elaborated on in the following sections.

5.1 Algorithmic Considerations

With recent research opportunities and emerging sorting solutions such as in-memory and partial
sorting, future research needs to explore potential avenues for radically novel sorting architectures,
from algorithmic considerations to hardware-level enhancements. For instance, when developing
new sorting algorithms, it is crucial to commence with an initial argument considering a time
complexity of O(n). Assessing the evolution of sorting architectures, an emerging trend involves
using RAM devices for a new sorting approach known as stream sorting [67, 105]. Stream sorting
takes N data words as input and produces p words per clock cycle across N /p clock cycles. The
sorter achieves a throughput of w if it operates in a fully streaming manner, implying no waiting
time between consecutive input sets. Without a fully stream network, the throughput will be less
than p words per cycle. We anticipate that one of the pivotal challenges lies in devising algorithms
tailored specifically for hardware design, addressing pipeline and parallel processing concerns.
Solutions such as stream sorting represent cutting-edge approaches for achieving a more efficient
design right from the initial stages, optimizing both memory utilization and time complexity.

5.2 Power and Energy Efficiency

The issue of power usage holds significant importance in current and future hardware designs.
Given that sorting designs are being incorporated into a range of embedded and power-limited
systems, the reduction of power consumption takes on a vital role. Future works must delve into
innovative strategies for ultra-low-power hardware. These could encompass advanced clock gat-
ing, dynamic voltage scaling, and enhanced management of data transfer to curtail the energy
consumption tied to the implementation of sorting designs. Additionally, by loosening accuracy
demands and taking advantage of approximate computing techniques, hardware has the capacity
to execute computations with fewer resources.
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5.3 Resource Limitations

Hardware designs must operate within the boundaries defined by accessible resources such as reg-
isters, memory, and processing units. Striving to optimize the utilization of these resources while
upholding performance is challenging, especially when dealing with intricate sorting algorithms
that exhibit diverse computational demands. Lin et al. [49] provide a tradeoff between throughput
and resources. UC-based solutions (e.g., [3, 60]) have successfully achieved hardware sorting de-
signs with extremely simple digital logic. However, they achieved this at the cost of an exponential
increase in latency. Developing future sorting systems based on such emerging computing systems
that operate on simple data representations [7, 58] is a promising path forward.

5.4 Latency vs. Throughput Tradeoff

Designing hardware sorting systems necessitates finding the right compromise between latency
(the duration of a single sorting operation) and throughput (the number of sorting operations com-
pleted within a specific period). Designers must achieve an optimum point based on the application
expectations and hardware constraints.

5.5 Parallelism

Sorting algorithms encompass repetitive and regular processes that hold the potential for improve-
ment with parallelization and pipelining. Nonetheless, implementing efficient parallel/pipelined
hardware architectures (e.g., [65]) and the oversight of data inter-dependencies can intricate these
endeavors. Striking a harmonious equilibrium amidst diverse processing units while upholding
synchronization and communication can pose a considerable challenge. PIM solutions hold signif-
icant promise for the highly parallel execution of future sorting architectures.

5.6 Adaptation

Numerous practical applications demand data sorting in dynamic and ever-evolving streams. Craft-
ing hardware-based sorting designs capable of adeptly managing these dynamic inputs in real-time
presents a multifaceted difficulty. It is imperative for researchers to delve into adaptive algorithms
capable of flexibly adapting to shifting input patterns. This adaptability should ensure sustained,
efficient sorting performance while minimizing any notable additional workload.

5.7 Customization

Hardware sorting designs may need to be customized for specific applications or environments.
This requires flexibility in the design process (e.g., [49, 65]) to accommodate different require-
ments. From different data types to various data precisions (i.e., bit-width), size of the dataset, and
hardware constraints (e.g., area and power budget), achieving the best performance may require
customized hardware. However, the higher design time and cost of implementing customized hard-
ware must also be considered.

5.8 Data Movement and Memory Access

Optimal memory access is pivotal for sorting algorithms, and hardware architectures must strive
to curtail data transfer and cache-related inefficiencies. Sorting entails frequent data comparisons
and exchanges, introducing the potential for irregular memory access patterns. Effectively han-
dling these access patterns is imperative to avert potential performance bottlenecks. The prob-
lem aggregates in big data applications where the sorting engine is expected to sort a large set
of data.
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5.9 Technology Scaling

Hardware designs might necessitate adjustments to accommodate technological shifts, such as
advancements in the semiconductor manufacturing process. Designers must meticulously evaluate
the potentials and consequences of technological scaling on factors such as performance, area,
power and energy usage, and various design parameters.

6 Conclusion

Sorting is one of the crucial operations in computer science, widely used in many application do-
mains, from data merging to big data processing, database operations, robotics, wireless sensor
networks, signal processing, and wireless networks. A substantial body of work is dedicated to de-
signing hardware-based sorting. In this survey, we reviewed the latest developments in hardware-
based sorting, encompassing both comparison-based and comparison-free solutions. Comparison-
based solutions tend to incur high hardware costs, particularly as the volume and precision of data
increase. Comparison-free solutions have recently been proposed to overcome the challenges asso-
ciated with compare-and-swap-based sorting designs. We reviewed recent hardware solutions for
partial sorting and stream sorting, which are used to sort the top-k largest or smallest values of the
dataset. We also studied the latest emerging in-memory solutions for sorting operations. Finally,
we outlined the challenges in developing future hardware sorting, aiming to provide readers with
insights into the next generation of sorting systems.
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